Foot traffic analytics and point-of-interest analytics help shopping malls to understand consumer behavior patterns in any given zone of interest or point of sale.
Case Study
Foot traffic analytics: Miraflores Plaza Mall, Guatemala City
At PREDIK Data-Driven we conducted a POI and foot traffic analysis of a popular shopping mall in the city of Guatemala: Miraflores, which contains distinguished brands such as Adidas, American Eagle, Bershka, Burger King, CAT, Chilis, Cinépolis, Dominos Pizza, among others.
In this case study, we analyze the mobility and foot traffic inside and outside the establishment, in order to understand the behavioral patterns of consumers visiting the franchise. This analysis aims to answer the following questions:
How are visits distributed in the establishment?
Through location analytics, we identify the points of interest and apply a heat map to visualize the in-store mobility patterns of the clients, which allows us to visualize the customer journey, the dispersion of consumers, and the distribution of visits within the establishment.
This provides very useful information when conceptualizing the design of the infrastructure and internal architectural plans that make up each establishment so that leaders can implement strategies that improve the customer journey and implement more efficient expansion models while maximizing the shopping experience of consumers.
How’s the evolution of visits to the facility?
These analyses allow businesses to observe the evolution of visits over time, which can be very useful to identify patterns of foot traffic customer behavior and market trends in high and low traffic seasons.
Identify consumer behavior: Which days of the week are the most visited?
One of the most interesting applications of location intelligence is that it allows gaining detailed knowledge of customers’ behavior patterns by day, hour, month, or year, offering valuable insights to design marketing campaigns and commercial strategies based on the power hours of the shopping mall.
This analysis is very useful to know what is the performance of the stores at peak and off-peak hours of the day.
What is the foot traffic mobility pattern around the shopping mall?
Although foot traffic is related to the performance of any retail location, it is not the only key factor for success. Another fundamental aspect to be analyzed is the environment of the outlets, as it allows for comparisons and estimates of the number of visits, revenues, strategic and operational movements of the competition.
By gathering information on the competition’s potential customers, it is possible to carry out a more detailed benchmarking and generate strategies to capture the competition’s clients.
This analysis of the environment provides us with a detailed picture of the surrounding areas and the mobility patterns of people moving through the area. This data, combined with other factors, provides deep insight into predicting the revenues of any retail establishment.
What other insights can be gained by analyzing foot traffic at a shopping mall?
By analyzing data over a given period of time at a specific location, such as a shopping mall, it is possible to estimate the percentage distribution of consumers who visited the competitor’s store.
At PREDIK Data-Driven we conducted a comparative study of two shopping malls in the city of Cape Town, South Africa: Vangate Mall, which contains distinguished brands such as Tekkie Town, Cell C, Studio 88, Rocomamas, Nando’s, Jimmy’s Killer Prawns, among others, and Maynard Mall, another shopping mall made up of renowned brands like Shoprite, Clicks Pharmacy, Rage, Jumbo, FixIt, Total Sports. Read the full article here
Customer Analytics
With this analysis, it’s possible to infer in which other places (stores, restaurants, shopping malls, residential areas, among others) the people who were at a point of interest also visited. Thus, Miraflores shopping mall can analyze how their customers behave, since they can look where and how long they were before and after visiting the stores. This allows them to generate high-value insights to optimize the understanding of current consumers and search for new potential customers with similar behaviors.
Identifying ideal areas in expansion and site selection strategies
With mobility data, it’s possible to clearly understand the behavior of the people who pass through a given area, how they’re alike, their tastes, preferences, relative wealth index, and purchasing potential. Including an in-depth analysis of the commercial establishments in the area in question, becomes a crucial factor in determining the best locations for the opening of new stores.
What is the revenue potential of my competitor?
Through machine learning models, it’s possible to predict the revenue and visits of a competitors´ store. With these models, Miraflores shopping mall could get to estimate the revenue of its competitors in a specific week, month, or year. These models can also be used, for instance, to predict the potential success of an outlet that is about to open. This is ideal to complement feasibility studies for new stores in expansion plans.
All these insights are generated by applying location intelligence and mobility analysis, if you are interested in knowing more about these insights, we conducted a POI characterization case study in Bangalore, India POI Analytics: Uses and Applications.