Measuring footfall in restaurant franchises

Footfall analytics have revolutionized the way retailers implement branch expansion, commercial and operational strategies in the restaurant franchise market.

The correlation between location and footfall analytics, visits, sales, and the success of retail fast-food franchises have been studied and proven, so the development of this type of analysis has become a priority in the site selection process and expansion strategies.

Case study: Vips Vs. Toks, Mexico City

At PREDIK Data-Driven we conducted a detailed study of two retail restaurant franchises in Mexico City: Vips and Toks.

What is the foot traffic mobility pattern around both restaurants?

Although foot traffic is related to the performance of any retail location, it is not the only key factor for success. Another fundamental aspect to be analyzed is the environment of the restaurants, as it allows for comparisons and estimates of the number of visits, revenues, strategic and operational movements of the competition.

By gathering information on potential customers, it’s possible to carry out a more detailed benchmarking and generate strategies to capture the competitor’s clients.

This analysis of the environment provides us with a detailed picture of the surrounding areas and the mobility patterns of people moving through the area. This data, combined with other factors, provides deep insight into predicting the revenues of any retail establishment.

How are visits distributed in each establishment?

Through location intelligence, we identify the points of interest and apply a heat map to visualize the in-store mobility patterns of the clients, which allows us to visualize the customer journey, the dispersion of consumers, and the distribution of visits within both establishments.

This provides very useful information when conceptualizing the design of the infrastructure and internal architectural plans that make up each establishment so that leaders can implement strategies that improve the customer journey and implement more efficient expansion models while maximizing the shopping experience of consumers.

Which of the stores is the most visited?

Percentage distribution of visits registered between November and December 2020:

When analyzing the in-store mobility at both establishments during the established time period, we identified that 71% chose to visit Toks, while the remaining 29% preferred Vips, this has a correlation with the location of the establishments and the preference of consumers when it comes to choosing this restaurants.

These analyses allow businesses to observe the evolution of visits over time, which can be very useful to identify patterns of foot traffic customer behavior and market trends in high and low traffic seasons.

Identify consumer behavior: Which days of the week are the most visited?

This analysis is very useful to know what is the performance of the establishments at peak and off-peak hours of the day.

What other insights can be obtained by analyzing footfall at a point of sale?  

Understand which customers both restaurants share  

By analyzing data over a given period of time at a specific location, such as a restaurant, it’s possible to estimate the percentage amount of consumers that visited both franchises.  

Customer Analytics

With this analysis, it’s possible to infer in which other places (stores, restaurants, shopping malls, residential areas, among others) the people who were at a point of interest also visited. Thus, Vips and Toks can analyze how their customers behave, since they can observe where and how long they were before and after visiting the establishments. This allows them to generate high-value insights to optimize the understanding of current consumers and search for new potential customers with similar behaviors.

Identifying ideal areas in expansion and site selection strategies

With mobility data, it’s possible to clearly understand the behavior of the people who pass through a given area, how they’re alike, their tastes, preferences, relative wealth index, and purchasing potential. Including an in-depth analysis of the commercial establishments in the area in question, becomes a crucial factor in determining the best locations for the opening of new restaurants.

What is the revenue potential of my competitor?

Through machine learning models, it’s possible to predict the revenue and visits of a competitors´ restaurant, these models, could help both franchises to estimate their competitor’s revenue in a specific week, month, or year. These models can also be used, for instance, to predict the potential success of an outlet that is about to open. This is ideal to complement feasibility studies for new restaurants in expansion plans.

 

Request a Free DEMO

Our latest article

mobility data guide

Do you want to receive content like this directly to your email inbox?

Join our community of more than 100K readers and receive weekly articles, studies, and information that will improve your decision-making and business performance.

    See what we are posting on social media

    Get the most out of data. Beat your competition, understand the market, identify new business opportunities, and solve complex problems.

    Talk to an expert >>

    Receive relevant insights straight to your inbox

    Join our community of more than 100K readers and receive weekly articles, studies, and information that will improve your decision-making and business strategies.